On eigenvalue asymptotics for strong δ-interactions supported by surfaces with boundaries

نویسندگان

  • Jaroslav Dittrich
  • Pavel Exner
  • Christian Kühn
  • Konstantin Pankrashkin
چکیده

Let S ⊂ R3 be a C4-smooth relatively compact orientable surface with a sufficiently regular boundary. For β ∈ R+, let Ej(β) denote the jth negative eigenvalue of the operator associated with the quadratic form H(R) ∋ u 7→ ∫∫∫

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotics of the Bound State Induced by Δ-interaction Supported on a Weakly Deformed Plane

In this paper we consider the three-dimensional Schrödinger operator with a δ-interaction of strength α > 0 supported on an unbounded surface parametrized by the mapping R2 3 x 7→ (x, βf(x)), where β ∈ [0,∞) and f : R2 → R, f 6≡ 0, is a C2-smooth, compactly supported function. The surface supporting the interaction can be viewed as a local deformation of the plane. It is known that the essentia...

متن کامل

ar X iv : m at h - ph / 0 30 30 72 v 1 3 1 M ar 2 00 3 Eigenvalue asymptotics for the Schrödinger operator with a δ - interaction on a punctured surface

Given n ≥ 2, we put r = min{ i ∈ N; i > n/2 }. Let Σ be a compact, Cr-smooth surface in Rn which contains the origin. Let further {Sǫ}0≤ǫ<η be a family of measurable subsets of Σ such that supx∈Sǫ |x| = O(ǫ) as ǫ → 0. We derive an asymptotic expansion for the discrete spectrum of the Schrödinger operator −∆−βδ(·−Σ\Sǫ) in L2(Rn), where β is a positive constant, as ǫ → 0. An analogous result is g...

متن کامل

Asymptotics of eigenvalues of the Schrödinger operator with a strong δ-interaction on a loop

In this paper we investigate the operator Hβ = −∆−βδ(·−Γ) in L (R), where β > 0 and Γ is a closed C Jordan curve in R. We obtain the asymptotic form of each eigenvalue of Hβ as β tends to infinity. We also get the asymptotic form of the number of negative eigenvalues of Hβ in the strong coupling asymptotic regime. MSC: 35J10, 35P15

متن کامل

Eigenvalue asymptotics for the Schrödinger operator with a δ-interaction on a punctured surface

Given n ≥ 2, we put r = min{ i ∈ N; i > n/2 }. Let Σ be a compact, Cr-smooth surface in Rn which contains the origin. Let further {Sǫ}0≤ǫ<η be a family of measurable subsets of Σ such that supx∈Sǫ |x| = O(ǫ) as ǫ → 0. We derive an asymptotic expansion for the discrete spectrum of the Schrödinger operator −∆−βδ(·−Σ\Sǫ) in L2(Rn), where β is a positive constant, as ǫ → 0. An analogous result is g...

متن کامل

Gap asymptotics in a weakly bent leaky quantum wire

The main question studied in this paper concerns the weak-coupling behavior of the geometrically induced bound states of singular Schrödinger operators with an attractive δ interaction supported by a planar, asymptotically straight curve Γ. We demonstrate that if Γ is only slightly bent or weakly deformed, then there is a single eigenvalue and the gap between it and the continuum threshold is i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Asymptotic Analysis

دوره 97  شماره 

صفحات  -

تاریخ انتشار 2016